

0040-4039(94)01677-1

Efficient Synthesis of Novel α-Aryl(alkyl)-β, β-difluorovinyl and α-Aryl(alkyl)-β-fluoro-β-perfluoroalkylvinyl Sulfides

In Howa Jeong,*^a Yong Ki Min,^b Young Sup Kim,^b Bum Tae Kim,^{*b} and Kwang Yun Cho^b

> ^{*}Department of Chemistry, Yonsei University, Kangwon-do 222-701, Korea ^bKorea Research Institute of Chemical Technology, Daejeon 305-606, Korea

Abstract : Reaction of 1, 1-bis(phenylthio)perfluoroalkyl aromatics or alkanes with a mixture of 2 equiv. of $TiCl_4$ and 4 equiv. of $LiAlH_4$ in THF at reflux temperature for 3 hours afforded α -aryl(alkyl)- β , β -difluorovinyl and α -aryl (alkyl)- β -fluoro- β -perfluoroalkylvinyl sulfides in good yields.

Olefins substituted by two fluorines or both fluorine and perfluoroalkyl group in a geminal manner at olefin carbon are very reactive toward nucleophiles and thus undergo nucleophilic vinylic substitution reaction via addition-elimination pathway.¹ Of particular interests in these olefins are α -aryl(alkyl)- β , β -difluorovinyl and α -aryl(alkyl)- β -fluoro- β -perfluoroalkylvinyl sulfides because these compounds are useful building block for the preparation of fluorinated and perfluoroalkylated olefins and α -fluorinated and α -perfluoroalkylated ketones which are important bioactive fluoroorganic compounds. Although several methods for the preparation of β , β -difluorovinyl sulfides which contain a hydrogen,^{2a, 2d} halogen,^{2d} alkylthio^{2b, 2e, 2f} or alkylseleno group^{2d} at α -carbon atom. Only one example^{2c} has been reported on the preparation of α -alkyl- β , β -difluorovinyl sulfides, but this method lacks generality. In this communication, we report a general and efficient method for the preparation of α -aryl(alkyl)- β , β -difluorovinyl sulfides.

Treatment of 1, 1-bis(phenylthio)-2, 2, 2-trifluoroethylbenzene $(1a)^3$ with a mixture of 2 equiv. of TiCl₄ and 4 equiv. of LiAlH₄ in THF at reflux temperature for 3 hours afforded only 2, 2-difluoro-1-phenylthiostyrene (2a) in 78% isolated yield. In this reaction, no reduced products was detected. Although reaction of 1a with 20 equiv. of Raney Ni in acetone at reflux temperature for 2 hours also provided 2a, yield is relatively low and reduced product, 1-phenylthio-2, 2, 2-trifluoroethylbenzene, was obtained in 10% isolated yield. Therefore, reactions of other perfluoroalkylated dithioketals with a mixture of TiCl₄ and LiAlH₄ were performed under the same condition and results are summarized in Table 1.

In a typical experiment, a mixture of titanium tetrachloride (5.0 mmol) and lithium aluminum hydride (10.0 mmol) in dry THF (50 ml) was stirred at room temperature for 1 hr. under nitrogen atmosphere and then heated to boiling. 1, 1-Bis(phenylthio)trifluoroethylbenzene (2.5 mmol) in THF (5 ml) was added under reflux and the reaction mixture was kept boiling for further 3 hrs. After cooling, the reaction mixture was poured on ice water, neutrized with conc. HCl and extracted with ether. The ether solution was dried and chromatographed on SiO₂ column. Elution with hexane provided 1-phenylthio-2, 2-difluorostyrene (2a) in 78% yield. 2a : oil ; ¹H NMR (CDCl₃) δ 7.55-7.52 (m, 10H); ¹⁹F NMR (CDCl₃) δ -75.57 (d, J =

12.5 Hz, 1F), -77.80 (d, J = 12.5 Hz, 1F); MS, m/e (relative intensity) 248 (M⁺, 18), 121 (31), 109 (100), 77 (18); IR(neat) 3080, 1685, 1581, 1477, 1442, 1269, 1234, 760, 690 cm⁻¹.

SC ₆ H ₅ R _F CF ₂ CR SC ₆ H ₅	2 eq	uiv. TiCl4 + 4 equiv. LiAlf THF, reflux, 3 hrs	$\xrightarrow{H_4} \qquad \xrightarrow{R_F} \qquad C = \\ F \qquad \qquad F \qquad \qquad 2$	R SC ₆ H ₅
Compound No.	R	R _F	2 , Yield(%) ^a	Z/E⁵
1a	C ₆ H ₅	F	78	-
1 b	C_6H_5	CF ₃	92	16/84
1 c	C_6H_5	CF_3CF_2	87	36/64
1 d	CH ₃	F	78	-
1e	$C_{6}H_{11}$	F	90	-
1 f	$n-C_3H_7$	F	77	-
1 g	$n-C_3H_7$	CF ₃	90	48/52
1 g	$n-C_3H_7$	CF ₃ CF ₂	86	34/66

Table 1. Preparation of Fluorinated Vinyl Sulfides 2

*Isolated yields. ^bZ/E ratio was determined by ¹⁹F NMR and ¹H NMR spectrum.

Acknowledgement. The authors thank the Yonsei University and the Ministry of Science and Technology for financial support.

REFERENCES

- (a) Gimbert, Y.; Moradpour, A. *Tetrahedron Lett.* **1991**, *32*, 4897-4900. (b) Gimbert, Y.; Moradpour, A.; Dive, G.; Dehareng, D.; Lahlil, K. J. Org. Chem. **1993**, *58*, 4685-4690.
- (a) Nakai, T.; Shiraishi, S.; Ishikawa, N. Tetrahedron Lett. 1978, 3101-3102. (b) Tanaka, K.; Nakai, T.; Ishikawa, N. Chem. Lett. 1979, 175-178. (c) Feiring, A. E. J. Org. Chem. 1980, 45, 1962-1964. (d) Piettre, S.; De Cock, Ch.; Merenyi, R.; Viehe, H. G. Tetrahedron 1987, 43, 4309-4319. (e) Purrington, S. T.; Samaha, N. F. J. Fluorine Chem. 1989, 43, 229-234. (f) Muzard, M.; Portella, C. J. Org. Chem. 1993, 58, 29-31.
- 3. Jeong, I. H.; Min, Y. K.; Kim, Y. S.; Cho, K. Y.; Kim, K. J. Bull. Korean Chem. Soc. 1991, 12, 355-356.

(Received in Japan 4 January 1994; accepted 11 July 1994)